

Handheld Emulation Station
Final Report

Group: sdmay19-25

Client/Faculty Advisor: Dr. Julie Rursch

Team Members:

 Nick Lang

Sean Hinchee

Matthew Kirpes

Nic Losby

Jacob Nachman

Team Email: ​sdmay19-25@iastate.edu

Team Website: ​https://sdmay19-25.sd.ece.iastate.edu

https://sdmay19-25.sd.ece.iastate.edu/

Executive Summary 4

Requirements and Specifications 5
Functional Requirements 5
Use Cases 5
Non-Functional Requirements (tied to clients and/or target users) 6

System Design & Development 6
Design Plan 6
Design Objectives 7
System Constraints 8
System Architecture Diagram 8
Design Block Diagram 9
Modules/Interfaces 10

Implementation 11
Implementation Diagram 11
Technologies/Software Used 12
Software/Design Choices 12

Software Design 12
Hardware Design 13

Standards and Best Practices 14

Testing, Validation, and Evaluation 14
Test Plan 14
Unit Testing 15
Interface Testing 16
System Integration Testing 16
Validation and Verification 16

Project and Risk Management 17
Task Decomposition/Roles and Responsibilities 17
Project Schedule 18
Risks and Mitigation 19
Lessons Learned 23

Conclusions 24
Closing Remarks for the project 24
Future Work (potential directions for the Project 25

Appendix 25
List of References 25

Team Information 26

1. Executive Summary
The project we chose to do was make a handheld emulation station in order to
play old school retro games. We felt that this would be a good project that, not
only encapsulated all of the skills we have learned throughout our college career,
but also was a project we would enjoy to work on throughout the entirety of our
senior year.

The project consists of three main components that we have been working on, a
Printed-Circuit Board (PCB) which holds the raspberry pi that runs the system, a
kernel module for the system with General Purpose Input and Output pins
(GPIO) for button input, and a software emulator to run games for the original
GameBoy. We felt that these three components were necessary to, not only
make the system we have imagined for ourselves, but applied a wide range of
skills we have learned throughout our various classes here at Iowa State
including Electrical Engineering (EE) classes, Operating Systems, as well as the
various software classes we have been in throughout our college career.

The EE component of the project (the PCB) is where all of our circuitry lies. We
have designed it to charge the system as well as be able to connect the battery
and draw from it to power the raspberry pi. It connects the screen, battery, pi,
and buttons all together to make a functioning system.

The kernel module and GPIO part of our system is where the operating systems
knowledge comes into play. We have developed a fully functioning kernel module
with our systems specific needs in mind. This will allow our system to run on low
latency as we do not need anything fancy or complex in order to run our system.
It contains a semi-functioning GPIO library we have developed ourselves which
allows for low latency button input.

The software side of the project, the GameBoy emulator is the primary software
component of our project. It is written in the Go programming language and has
the core components of an emulator. We emulate the Gameboy version of the
Z80 processor, which is a 8 and 16 bit processor. We emulate reading and
writing to memory, render images to the screen, and have a partially functioning
GPU. Overall, this component of the project was extremely difficult, and took up a
lot of our time but was a very good learning experience from a software
standpoint.

All of the above is packed nicely into a case that we have made using TinkerCAD
software and 3D printed ourselves. This allows us to make the case at a cost
efficient price, as well as to change and customize it to our exact specifications,
as well as makes it easy to change whenever we make a hardware or
dimensional change.

2. Requirements and Specifications
2.1. Functional Requirements

We only have one target user group for our Handheld Emulation Station, which is
gamers who want a retro experience in there pockets. Since we only have one
user group, our functional requirements and uses cases are targeted towards
their experience of the product. Our functional requirements for the user are as
follows:

● Long lasting battery life

● Universal save files

● Various games to play

● 3rd party software support

● Load and save games

We want our users to get the most out of their emulation station and we feel that
these requirements are the core of what our users should want and the core of
what they should be able to do with their system.

2.2. Use Cases
The main use case for our product is to allow a user to have a powerful as well
as versatile emulation platform in their pocket to play the retro games that they
know and love.

Our platform also offers a way to easily backup saves files to the cloud to
maintain data integrity. This feature would also allow users to sync their save
states between multiple devices.

2.3. Non-Functional Requirements (tied to clients and/or
target users)

The target user group for our project in conjunction with the competing, existent,
solutions leaves our project in a position where we must prioritize compactness,
ergonomics, and versatility. Our product must be able to fit in a user’s pocket, or,
at minimum, be small enough to make transport a trivial concern. As such, the
user experience is oriented around making a product which is able to perform a
variety of tasks for an extended period of time across many locations.

3. System Design & Development
3.1. Design Plan

Our design plan for the emulation station consists making the PCB,
Emulator, Kernel Mode and case throughout the course of our second
semester here at Iowa State. We figured that working on all 3
simultaneous was the best and most efficient way to divide our time, as
well as give us the ability to make changes depending on the changing
needs of another component on the system.

The PCB was designed with integration and efficiency in mind. We wanted
to get the most power out of our battery in order to be able to power our
3.5 inch screen, Raspberry Pi computer, all of the buttons, and
accessories our design has. We also needed to be able to charge and
power the Raspberry Pi at 5V whereas the battery only supplied 3.7V. We
went down the path of using example circuits in the datasheets from the
manufacturer. This did not pan out the way it was expected. After
researching why the power circuit was not functioning properly, it was
discovered the manufacturer or the parts supplier supplied the incorrect
datasheet and the correct datasheet was nowhere to be found. After
dealing with this setback numerous times we purchased a reliable
alternative in order to meet our project needs.

The design of the kernel module was focused on keeping latency low for
the inputs of our system. It is very important to have low latency when
playing games due to the fast reaction times needed for certain mechanics
in various games. The kernel module is implemented to target the /dev, or,

udev, interface in Linux. That is, the physical input buttons are transported
over GPIO to allow for low-latency transport of user inputs. A filesystem is
implemented using the linux/fs.h and linux/device.h libraries and GPIO
inputs are implemented using the linux/gpio.h library. A user should be
able to perform a 10-byte read from a given /dev/rtXX file to see the button
state for the associated GPIO pin where XX is a 0-padded number in the
range of [0,13]. GPIO pins are read at the moment of a /dev file read
event, so an opened file descriptor can be held and repeatedly read for
GPIO pin state at the given moment. The table defining the relationship
between pin numbers and /dev file name are shown in Figure 3. In the
future, the table of relationships could be expanded to accommodate
human-readable file names, e.g. /dev/rtjoystick, /dev/rtstart, etc.

The Gameboy emulator portion of our system is our attempt to design
something new and simple that uses the hardware of our design, as well
as to attempt to implement a challenging part of the project. We started off
by designing a fully function Gameboy Z80 hybrid CPU and added support
for all 510 opcodes that the CPU needed to function through the use of
various Gameboy hardware documentation. We simultaneously emulated
the memory system by following the memory map provided in the
documentation, which enabled us to read and write memory from a game
cartridge to the system. From there we went on to implement a screen
renderer in order to draw images to the screen, and finally, finish it up by
connecting the system to the renderer by emulating the system GPU.

We finalized all of this by making a custom case tuned to our system
specifications using CAD software and printing it, allowing us to put all of
our electronics into a nice compact container that will keep the system
internals safe, as well as make it look sleek and user friendly.

3.2. Design Objectives
Our goal with these design choices was to make a fully integrated system
that users could hold in their hand and play the games that they want to.
We focused on compact, custom software, good battery life, and low
latency in order to fulfil the needs of our target audience. We want them to
be able to feel like they are using a system we enjoy

3.3. System Constraints
Our current biggest system constraint is that the emulator does not render
to the screen properly. This is because our GPU is not fully complete and
cannot properly render the screen from video memory. On top of this, our
current prototype is not very ergonomical with its boxy build and the
screen runs at roughly 30 fps.

3.4. System Architecture Diagram
Our current system block diagram is as follows:

Figure 1

Our system contains button and usb inputs which get sent through the
PCB to the raspberry pi zero that runs our software. The raspberry pi has
a kernel module on it with a custom GPIO library that reads the user input
from buttons or the data input from USB. From there the inputs are read

by the emulator and, as the CPU cycles through, it draws images to the
screen.

Figure 2

The diagram above is the system diagram for the emulator itself. The
memory management unit (MMU) is the core component of how the
emulator functions. When a cartridge (ROM) is loaded into the emulator,
hex values are read from the cartridge and the CPU determines what to
do based on the cartridge values. Depending on the command, the MMU
will write new values to the registers, send values to the CPU, send values
to the GPU to render the screen, and stores and loads the needed values
into internal memory.

3.5. Design Block Diagram
Figure 3

3.6. Modules/Interfaces
The kernel module was designed to provide the following interface scheme:

Figure 4

GPIO Pin Number Dev File Peripheral

03 /dev/rt0 Y-axis Joystick

05 /dev/rt4 D on D-Pad

07 Reserved Speaker

12 /dev/rt1 X-axis Joystick

13 /dev/rt2 U on D-Pad

15 /dev/rt3 R on D-Pad

16 /dev/rt5 L on D-Pad

29 /dev/rt12 L trigger

31 /dev/rt13 R trigger

33 /dev/rt6 X

34 /dev/rt7 A

35 /dev/rt9 Y

36 /dev/rt8 B

37 /dev/rt11 Start

40 /dev/rt10 Select

4. Implementation
4.1. Implementation Diagram

Figure 5

4.2. Technologies/Software Used
There were various technologies and software used in the making of our
emulation station. Listed below are the technologies we used with an
explanation of what they were used for:

● TinkerCAD: ​TinkerCAD is an online, web-based CAD software
which we used to make models for our case. It has a low learning
curve, simple to use, and is very dynamic with file types which were
all perfect features for our needs since we do not use CAD software
very often.

● Golang: ​Golang is the programming language we chose to write
our emulator in. Features include a very nice testing library, good
code readability, simple error handling and the added benefit of
learning a new programming language that could be used as an
alternative to C in future projects.

● EasyEDA: ​EasyEDA is an online, web-based Electronic Design
Automation (EDA) tool that can be used to design, implement, and
test circuits. We chose this software for similar reasons to
tinkerCAD in the form of simplicity and ease of access. It also has
built-in features for converting system schematics to PCB designs
that we could send to be printed. In addition, this software ties into
the parts library of LCSC a large parts supplier. At a click of a
button, we were able to order both the PCB and the parts to be
soldered and have them shipped together.

● SDL2: ​SDL stands for Simple DirectMedia Layer which is the
screen rendering library we implemented for our emulator. It
provides a simple graphics API that we used to draw images to the
screen. It was originally a C library that we found a Golang wrapper
for and were able to implement

4.3. Software/Design Choices
4.3.1. Software Design

The reason we chose to write the program in Golang is because we felt it
was, not only a better alternative to C, but that we would use this as an
opportunity to learn a new programming language and give us the ability

progress our skills. The programming language also provides great
infrastructure for things like setting up testing, error handling, as well as
garbage collection so we do not have to worry about memory
mismanagement. The language is also very readable which was helpful
when code was getting peer reviewed.

When designing the emulator, we chose to follow the Gameboy CPU
manual as well as the GBdev wiki for the implementation of the Gameboy
z80. This allowed us to know all of the opcodes that this processor
needed, as well as provided us with the memory map for all of the system
components. We chose the SDL library as there was a lot of
documentation on it, it was very easy to use and set up on linux distros
(i.e. the Raspberry Pi Zero), and allowed us to render things to the screen
rather easily. When integrating the system, we had it set up so that each
component of the CPU was it’s own piece of software and would send the
output from one piece to the next, as well as have a native API that one
component could use to connect to another component. This made the
integration of the system very.

4.3.2. Hardware Design
We chose to design our PCB with simplicity in mind. We wanted to assure
that we would be able to power our entire system with all of its
components, with as little power loss as possible, as well as making sure
that the PCB was small so that we could fit it into our desired size, as
being a compact solution is one of the things we were aiming to do. We
attempted to design our own charging unit ourselves so that the device
would not overcharge or short circuit, but that proved to be a very difficult
task, and we ultimately had to swap it out with a purchased unit for our
system. Another interesting design choice we had was actually not one
but two PCB boards. This is because, for the sake of being a compact
solution, it was actually better for us to design one dedicated to
peripherals, and another for the main unit and the placement of the
Raspberry Pi Zero W. This allowed us to make the second board smaller
and place it on the side of the main board, allowing us to make it even
more compact. This also allowed us to keep the costs down as printing 10
boards under 100mm​2​ was $2.00.

All of our component choices (buttons, USB, charging circuit, etc) were
made based on the best way to keep our prototype small. EasyEDA, the
online PCB designer we utilized, integrated well with the part selection the
LCSC maintains. We had the ability to import any part they had along with
the part footprint which made PCB design much faster. When picking
between Surface Mount (SMD) and Through-Hole (THT) the price
differences between various options were negligible, so we went with the
most compact solution for our peripherals which was SMD. We chose
0603 as the size due to the minimal footprint but also being large enough
to still solder by hand. We chose our screen based of the open source
device blob for the screen, kernel support for the screen, as well as the
end thickness of the screen. Screen technology should have been a factor
in the initial process.

4.4. Standards and Best Practices
5. Testing, Validation, and Evaluation

5.1. Test Plan
5.1.1. Emulator

In developing the software emulator for the gameboy our testing approach
was to create tests for each individual component in a vacuum. We also
develop tests that required multiple components to test their integration
and the system as a whole. These test were used to continually test our
emulator as it was being developed to ensure that any changes did not
break previously working features.

5.1.2. PCB

The plan for testing the power circuit went as follows. We would test the PCB for
continuity before soldering anything. Then after this test was passed, we would
visually inspect the PCB for any potential defects. After this, we would solder the
board fully. We would test the continuity of the part to the solder joint and/or pad
on the PCB if any pad was left exposed. This ensured we had a solid connection
between the part and the pad. Following this, we would solder a battery’s leads to
the battery pads on the PCB and test the voltage across the battery. Then we
would plug in the micro USB cable into the microUSB port and test VCC across
the micro USB connector ground on the PCB. If at least 5V was measured, we
would flip the power switch or bridge the two pads on the PCVB connecting VCC

to the ICs. This would power the circuit overall. We would then test the voltages
going from VCC all the way to the 5V output or at least what should have been
the 5V output. Usually the power circuit wass outputting wellover 20V. We tried
taking an off the shelf step down converter to step the 25V back down to 5V. This
was successful and we were able to power a LED however we were unable to
sustain any amount of real power draw. We then removed the step down
converter. For completeness, we shorted the output terminal and the circuit shut
off as expected only outputting voltage when a charging pulse was detected. We
also simulated a dying battery by using a lab bench power supply and slowly
dropping the voltage down to 3.4V. This was how we discovered the feedback
pin on the boost converter IC was actually the VCC pin as the output did not stop.
We would have over discharged any battery we used and the testing battery was
desoldered from the PCB.

Testing for battery life is as follows. First we charge up the batter to its full
capacity. Then we measure the voltage output form the battery at full capacity,
around 4.3V. We then stress test the system by playing a demanding game for
10 minutes. Afterwards we check the battery voltage yet again. We keep track
every 10 minutes for an hour and after an average drop of 0.02V per 10 minute
time period we fully discharge the battery. This battery gets shut off around 3.4V.
This gives us around 7.5 hours of estimated battery life.

5.1.3. Kernel Module

Kernel module testing and validation was performed via a series of assert(3) calls
to validate software operation being successful, verbose logging, and comparing
the inputs and outputs side by side to a Python program using a common and
well-documented GPIO management library for the Raspberry Pi.

5.2. Unit Testing
The software emulator utilizes the go test tool unit testing environment.
Each opcode in the CPU has an individual test and each opcode is tested
for state contamination as well as bad values. Each test builds a CPU,
indexes affected registers, performs the opcode, and then tests for state
contamination as well as bad values. Similarly the memory unit has test
cases for reading and writing to each of the memory ranges to ensure that
reading and writing is performed properly.

5.3. Interface Testing
The real-time kernel module interfaces - exposed as /dev/rtXX files - are
tested via the opening of each in turn and splitting the output of a given
read at a point in time between a shell-level monitor and a monitor within
the software emulator and comparing the results to each other for
consistency. That is, the /dev/rtXX filesystem should agree with,
programatically, the Python monitor script and the agreed value should be
reflected within the software emulator.

5.4. System Integration Testing
As per the interface testing section, 5.3, the primary method of
establishing integration between the system as a whole is by validating the
chain of inputs from the press of a button to the reception of a given input
within the software emulator. The complete chain is:

1. Physical button is pressed
2. Button press is passed over GPIO to the Raspberry Pi
3. Kernel driver registers the button press during file read event
4. File read event passes value to desired programmatic state in the

emulator

Testing of the integration sequence can occur between each step via
utilizing well documented and known-to-work tools which indicate that the
system is functioning as intended such as multimeter testing, Python script
validation, kernel log validation ,etc. At each point within the testing
sequence, the correct state should be reflected in real-time.

5.5. Validation and Verification
Validation occurs at multiple stages within a given testing sequence or
operation for both the software emulator and the kernel module.

The kernel module rigorously tests the state of operation and does not
take chances with bad state. That is, operation will cease when state is
known to be in an inoperable or unsafe combination. Additionally, said
state and the circumstances surrounding the invalid state -- via variable

state printing or otherwise -- will be logged to the kernel debug log
available via dmesg(1). These log messages are logged using printk(9) in
combination with the macros KERN_WARNING and KERN_INFO to
further enumerate the intent and severity of the state violation.

The software emulator sports a robust test suite as well as decisive and
involved error handling at run time. Chatty logging is an option available
for run-time and errors are handled through a suite of function interfaces
which allow for accurate and expressive message handling. Explicitly
debug-oriented calls can be placed in source at any location via the
debug() function, printed only when chatty mode. Errors can be handled
dynamically or be passed into the function efatal() which accepts a
formatted message and an error, creating a line-unique error message
coupled with a fatal ending of the run-time operation. Furthermore, the
efatal() function calls the sysfatal() function which ends the run-time
operation in a fatal manner, providing a line-unique message in the
error/debug log. The cohesive concatenation of a non-nil error being
passed to efatal() will output something similar to: [timestamp] Fatal:
[line-specific message] -- [error text].

6. Project and Risk Management
6.1. Task Decomposition/Roles and Responsibilities

The roles and responsibilities for the project are as follows:
● Jacob Nachman: ​Development time mostly spent on the emulator.

Worked on the opcodes, CPU implementation, GPU
implementation, and integration. Assisted in the original version of
the PCB design and the screen renderer, as well as took charge of
most of the documentation and paperwork for the semester.

● Nick Lang: ​Development time spent on the emulator. Worked on
the various types of memory that the system needed to emulate,
implemented save states for the system, and made the case design
for the final prototype. Also assisted with integration of the system
and designing testing for the emulator.

● Matthew Kirpes: ​Development time spent on the emulator.
Focused on assisting with the memory implementation as well as
the integration of the system.

● Nic Losby: ​Primary developer of the PCB. Focused time on
iterative design making sure that the board had the ability to power
all of our components as well as worked on system optimization.
Primary handler of ordering system components and case printing.

● Sean Hinchee: ​Lead designer for the kernel module and GPIO
library, as well as the primary developer of the software testing
infrastructure and screen rendering library. Assisted with
implementation of CPU as well as debugging and testing the
system as a whole.

6.2. Project Schedule
6.2.1. Gantt Chart (Proposed vs Actual)

Proposed

Tasks
Semester 2 (week)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Develop
Emulator

CPU

GPU

MMU

Kernel
Module

PCB

Assemble
1st
Prototype

Initial
Testing

Final
Product
Completed

Final Testing

Final
Presentation

Actual

Tasks
Semester 2 (week)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Develop
Emulator

CPU

GPU

MMU

Kernel
Module

PCB

Assemble
1st
Prototype

Initial
Testing

Final
Product
Completed

Final Testing

Final
Presentation

6.3. Risks and Mitigation
6.3.1. Assumed Risks (before we started)

6.3.1.1. Kernel Module

Documentation was known to be sparse and potentially inconsistent for
kernel-layer interfaces and libraries. As such, it was an expected potential
risk that development of the module may be slow or significantly delayed
due to lack of or incorrect documentation. Additionally, despite potential
first impressions, the task to be performed by the kernel module is
surprisingly niche, where many related solutions perform either implement
significantly more or significantly fewer features than the needs of our
group’s kernel module. As such, utilizing other sources for reference is not
necessarily a viable option as many kernel interfaces are designed for
specific solution task scales, of which many are many greater in scope
than our solution.

6.3.1.2. Software Emulator

The assumed risks with the emulator consisted a lot on the documentation
front. We were not sure how reliable the documentation we were looking
at was. For all we know, it could have been completely incorrect and we
were following in blindly. After some cross referencing we decided to start
with the Gameboy CPU manual and go from there. Other than that, we did
not assume that making an emulator would be terribly difficult.

6.3.1.3. PCB

Since this was the first time anyone in our group even thought about
designing and making a Printed Circuit Board we knew this was going to
be a challenge. We also knew that Lithium Polymer batteries can be
temperamental and can catch on fire if mishandled thus fire was an
accepted risk. We accepted this risk and began to read up on how to
make a PCB and watched numerous YouTube videos on the subject of
making a schematic to getting a PCB made and shipped to us.

6.3.1.4. Case

We assumed there would only be the challenge of brushing up on prior
CAD skills in order to design a case. We were unaware how clunky a
rectangular case could feel in the beginning.

6.3.2. Actual Risks (challenges)

6.3.2.1. Kernel Module

Development of the Linux kernel module ran into a number of issues
during its composition and refinement. Near the tail end of the project, the
most significant issues in obtaining a consistent read from a GPIO pin
were encountered. More explicitly, continuous reads of 0 would occur and
be in opposition with validation from a Python GPIO script testing the
same inputs. Upon further investigation at this stage in the kernel module
development, it was implied by a sample of sources which indicated that
the issue may stem from a lack of proper handling with regards to the
Broadcom chip on the Raspberry Pi. That is, specific interrupt handling
may need to be implemented within the kernel module to allow for

consistent management of the GPIO pins. Research yielded few useful
results in this area and lead to the collective decision to abandon
development of the kernel module to the end of furthering work on the
software emulator.

The emulator also suffered from changes currently occurring within the
common interfaces for Linux modules and programs to express arbitrary
resources as file systems due to the ecological shift to systemd resources
and interfaces. Conflicting information was repeatedly found for how
precisely to express resources as file systems in a manner which is not
oriented for large-scale software projects outside of scope from our project
design. Specifically, there are divergences in terms of how projects are
intended to express themselves via the /sys and /dev device trees.

Additionally, the kernel module had to be re-licensed to allow the module
to link against specific GNU libraries. This is evidenced by the call in the
module source to the macro MODULE_LICENSE.

6.3.2.2. Software Emulator

The actual risks for the emulator that we encountered proved to be a lot
more than we had anticipated from our research. All of the posts we were
reading for research were actually from people who have written
emulators previously, which caused us to vastly underestimate the amount
of time it took to make one from scratch. Our documentation still proved to
be problematic at times so we had to cross reference various sources. We
also had to implement 510 opcodes instead of 255 due to a
misunderstanding in how the opcode infrastructure was designed. On top
of that, the GPU proved to be difficult to because the Gameboy GPU
actually draws three screens instead of just one.

6.3.2.3. PCB

One unexpected risk was part shipping times and delays. Parts and the
PCB had to come from China for the first part of the semester as it was
very cheap and in order to iterate efficiently we utilized a Chinese based
company for PCB manufacturing. Due to the Chinese New Year our PCB
took twice as long as it usually did during the power ciruti debugging

phase which pushed us back further than we had hoped to be with the
PCB. Another challenge faced was the part supplier and/or manufacturer
of one of the cheaper parts we were using, uploaded the incorrect
datasheet for the part and thus the pinout was incorrect.

6.3.2.4. Case

The actual risks for the case was a broken 3D printer which took many
hours to get back to a working condition. As well as how to commision use
of someone else's printer while the one we have is nonfunctioning.

6.3.3. Mitigation of Risk

6.3.3.1. Kernel Module

Development of the kernel module was frozen in the wake of the
end-of-semester deadlines coming up for the sake of advancing
deliverables within the software emulator. This decision was finalized via
collective vote on the team Slack server which was unanimous. As such, a
future solution would be desired and a number of potential alternatives
have been identified, including the potential to leverage an existing /sys
device tree found within, specifically, the Raspbian kernel build of the
Linux kernel. It is possible that, in the future, it would be possible to
complete the kernel module, but a great deal of additional research and
extensive testing would be required, all of which are time consuming in the
face of deadlines and alternative deliverables.

6.3.3.2. Software Emulator

Our plan of mitigation for the risks of software emulation was pretty
straightforward. We were able to find various documentation sources, as
well as use other open source emulators as references when the
documentation did not make a lot of sense. This helped us improve our
skills in figuring out how to pick and choose reliable and necessary
information to achieve a certain goal. As for the opcodes, we were able to
use the cross referenced documentation to write a python script to write
the opcodes as needed (they were various byte operations so rather easy
to automate). As for the risk mitigation of the GPU issues, we attempted to
draw larger than the screen would allow us, but ran into issues trying to
render that properly or get it to display at all.

6.3.3.3. PCB

As mentioned previously, the power circuit had many troubles. For the
boost converter IC, the VCC pin was switched with the feedback pin on
the IC and thus our output voltage was 25V instead of 5V and could not
sustain any substantial power draw. This is what caused us to purchase a
power circuit instead. After using an off the shelf solution our debugging
became non-existent and introduced a new feature of powering the
system off the charger while still charging the battery.

6.3.3.4. Case

In order to mitigate the risk of the broken 3D printer, the entire hot end had
to be disassembled, baked and soaked in acetone in order to remove the
clogged materials. While doing this we were able to hire someone else to
print parts for us as a backup plan. After repairing the printer and updating
the firmware, we were able to achieve a very nice print overall.

6.4. Lessons Learned
6.4.1. Kernel Module

The kernel module was a fantastic source of learning material with regards
to Linux module development, Linux device tree development, system
integration, and API documentation.

Linux kernel module development is a realm of skill utility which is not
extensively found within Iowa State University course syllabi and as such
possesses a fairly noticeable learning curve compared to some other
potential fields. Although development in C is not necessarily an issue,
learning to effectively utilize open-source documentation and manually
investigate points where documentation is incorrect is missing is an
exceptionally valuable skill. The vast majority of time spent on this section
of the project was spent reading - other - source code and documentation
and attempting to apply the knowledge existent to implement or refine - via
validation or otherwise - portions of the real-time input kernel module.

Due to the nature of the real-time input system, the specification for inputs
had to be rigorously documented and consistently implemented. That is,
all other integrations along the pipeline of the system integration should be
able to -- with the relevant API documentation -- blindly document and
implement functionality leveraging the real-time interfaces.

6.4.2. Software Emulator

We learned so much implementing our own gameboy emulator. One of
the biggest things we learned is that almost all emulators are designed by
people who have made one before. The learning curve was very high, the
documentation was rocky, but it was a fantastic learning experience.
Emulating a processor, not only helps us to improve our programming
skills, but it also gives us a good experience at learning how to interpret
documentation, make our own design choices​, ​and helped us to improve
on the computer engineering and processor design skills we have learned
throughout college. I think that this part of the project was a very useful
experience and one that will be remembered by us all going forward in our
careers. Working our way through faulty documentation and being able to
deduce outcomes using our intuition and a mix of sources is one skill that
will be valuable throughout the entirety of our working careers.

6.4.3. PCB

We learned so much during the entirety of this project. From the
perspective of the hardware we were able to learn about electronics
schematics design, datasheet reading, schematics to PCB, PCB layout,
PCB ordering, PCB testing, microsoldering, testing for power efficiency,
deciding which parts should be used over other parts, system integration,
and finally but not least, battery safety handling procedures. There were
no fires this time when handling batteries.

While certain aspects of this list are within the scope of classes here at
Iowa State University such as PCB design, the course is an elective and
did not fit in to any of our schedules or priorities prior to Senior Design. If
we had taken this course, we are sure it would have helped immensely
throughout this project.

We also learned even though manufacturers or part suppliers provide
documentation, there is no guarantee the documentation is correct. While
looking for parts online too, it is very easy for not legit suppliers to provide
false information about battery capacity as it is not trivial to thoroughly test
the claims.

6.4.4. Case

We were able to revisit prior skills with CAD software and design a case
from scratch. We learned how to pay others for use of their 3D printer as
well as how to fix a team member’s printer when the extruder became very
clogged. We also learned designing an ergonomic case is no easy task as
hands are very finicky and modeling their shape in CAD is an exuberant
amount of time and effort.

7. Conclusions
7.1. Closing Remarks for the project

Overall, the project was a success. Although a great deal of roadblocks
were encountered and some goals or portions of the project fell through,
at the end of the day all goals were set by us, the students, and crafted
out of a passion for the product and powered by self-motivation.

7.2. Future Work (potential directions for the Project
In the future, marketing this product would be very easy. There is a large
market for other products like this one. Many online personalities have
been reviewing a product very similar, even based off of the Raspberry Pi
Zero W. The way we can differentiate ourselves from the competition is to
switch over to the Raspberry Pi Compute Module 3+. We would achieve
an effective 3x of our compute power and thus be able to emulate more
systems out there including the N64 which is not currently possible on
both our product and all other existing handheld products. By adding and
additional thickness of 5mm we would be able to effectively double the
battery life and keep our long hours of play time even with the compute
power increase.

Since thinness is the name of the game when it comes to marketing a
product, shaving even 1mm is preferred. We are currently using a clunky
TFT screen with poor viewing angles. A change over to an IPS LCD would
not only increase the brightness which would allow for better playing
conditions in direct sunlight but also offer better screen refresh rates. In
taking the proposed route of integrating a different IPS based LCD for a
screen, we could shave 5-7mm easily. This would allow for an additional
battery cell being added doubling the battery capacity. Thus the second
generation of this product would stay at the same thickness of our current
generation as well as have a drastically increased compute ability, more
pleasant screen experience, and with the same long lasting battery life.

8. Appendix
8.1. List of References

- http://gbdev.gg8.se/wiki/articles/CPU_Instruction_Set
- http://gbdev.gg8.se/wiki/articles/CPU_Registers_and_Flags
- https://github.com/CTurt/Cinoop/blob/master/source/gpu.c
- http://derekmolloy.ie/kernel-gpio-programming-buttons-and-leds/
- https://blog.fazibear.me/the-beginners-guide-to-linux-kernel-module-raspb

erry-pi-and-led-matrix-790e8236e8e9?gi=d3d72bb5c899
- https://www.youtube.com/watch?v=Fj0XuYiE7HU
- https://www.youtube.com/watch?v=VxMV6wGS3NY
- https://www.youtube.com/watch?v=35YuILUlfGs
- https://www.youtube.com/watch?v=SpKK6o4ffts

8.2. Team Information
8.3. Project

8.3.1. https://git.ece.iastate.edu/sd/sdmay19-25
8.3.2. https://git.ece.iastate.edu/sdmay19-25/emu
8.3.3. https://git.ece.iastate.edu/sdmay19-25/mod
8.3.4. https://git.ece.iastate.edu/sdmay19-25/pcb

8.4. Members
8.4.1. Nicholas Losby

- Major: Computer Engineering
- Post-Graduation: Work at RSM

8.4.2. Sean Hinchee

http://gbdev.gg8.se/wiki/articles/CPU_Instruction_Set
http://gbdev.gg8.se/wiki/articles/CPU_Registers_and_Flags
https://github.com/CTurt/Cinoop/blob/master/source/gpu.c
http://derekmolloy.ie/kernel-gpio-programming-buttons-and-leds/
https://blog.fazibear.me/the-beginners-guide-to-linux-kernel-module-raspberry-pi-and-led-matrix-790e8236e8e9?gi=d3d72bb5c899
https://blog.fazibear.me/the-beginners-guide-to-linux-kernel-module-raspberry-pi-and-led-matrix-790e8236e8e9?gi=d3d72bb5c899
https://www.youtube.com/watch?v=Fj0XuYiE7HU
https://www.youtube.com/watch?v=VxMV6wGS3NY
https://www.youtube.com/watch?v=35YuILUlfGs
https://www.youtube.com/watch?v=SpKK6o4ffts
https://git.ece.iastate.edu/sd/sdmay19-25
https://git.ece.iastate.edu/sdmay19-25/emu
https://git.ece.iastate.edu/sdmay19-25/mod
https://git.ece.iastate.edu/sdmay19-25/pcb

- Major: Software Engineering
- Post-Graduation: Work at Microsoft

8.4.3. Jacob Nachman
- Major: Computer Engineering
- Post-Graduation: Work at Collins Aerospace

8.4.4. Nick Lang
- Major: Computer Engineering
- Post-Graduation: Work at Buildertrend

8.4.5. Matthew Kirpes
- Major: Computer Engineering
- Post-Graduation: Work at ACT

